题目内容
数列{an}满足a1=1,an+3=an+3,an+2≥an+2(n∈N*).
(1)求a7,a5,a3,a6;
(2)求数列{an}的通项公式an;
(3)求证:
+
+
+…+
<2.
(1)求a7,a5,a3,a6;
(2)求数列{an}的通项公式an;
(3)求证:
| 1 |
| a12 |
| 1 |
| a22 |
| 1 |
| a32 |
| 1 |
| an2 |
(1)∵a1=1,an+3=an+3,
∴a4=4,a7=7
∵an+2≥an+2
∴a3≥3,a5≥a3+2,a7≥a5+2,
∴a5=5,a3=3,a6=a3+3=6
(2)∵an+3=an+3,an+2≥an+2(n∈N*)
∴an+3≤an+2+1(n∈N*)
∴an+1≤an+1,an+2≤an+1+1
∴an+1+an+2+an+3≤an+an+1+an+2+3,即an+3≤an+3
∴an+1=an+1,an+2=an+1+1,an+3=an+2+1
∴{an}为等差数列,公差d=1.
∴an=n
(3)证明:n=1时,
=1<2成立n>1时,
∵
=
<
=
-
(n>1)
∴
+
+
+…+
<1+(1-
)+(
-
)+…+(
-
)=2-
<2
∴
+
+
+…+
<2
∴a4=4,a7=7
∵an+2≥an+2
∴a3≥3,a5≥a3+2,a7≥a5+2,
∴a5=5,a3=3,a6=a3+3=6
(2)∵an+3=an+3,an+2≥an+2(n∈N*)
∴an+3≤an+2+1(n∈N*)
∴an+1≤an+1,an+2≤an+1+1
∴an+1+an+2+an+3≤an+an+1+an+2+3,即an+3≤an+3
∴an+1=an+1,an+2=an+1+1,an+3=an+2+1
∴{an}为等差数列,公差d=1.
∴an=n
(3)证明:n=1时,
| 1 |
| a12 |
∵
| 1 |
| an2 |
| 1 |
| n2 |
| 1 |
| n(n-1) |
| 1 |
| n-1 |
| 1 |
| n |
∴
| 1 |
| a12 |
| 1 |
| a22 |
| 1 |
| a32 |
| 1 |
| an2 |
<1+(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
∴
| 1 |
| a12 |
| 1 |
| a22 |
| 1 |
| a32 |
| 1 |
| an2 |
练习册系列答案
相关题目