题目内容
已知{an}为递减的等比数列,且{a1,a2,a3}?{-4,-3,-2,0,1,2,3,4}.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当bn=
an时,求证:b1+b2+b3+…+b2n-1<
.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)当bn=
| 1-(-1)n |
| 2 |
| 16 |
| 3 |
分析:(Ⅰ)由数列是递减的等比数列得q是正数,再从集合求出前三项,求出q代入通项公式即可;
(2)由(1)求出bn,并对n分类讨论:n=2k和n=2k-1化简bn,代入不等式的左边由等比数列的前n项和公式化简,再进行证明.
(2)由(1)求出bn,并对n分类讨论:n=2k和n=2k-1化简bn,代入不等式的左边由等比数列的前n项和公式化简,再进行证明.
解答:解:(Ⅰ)∵{an}是递减数列,∴数列{an}的公比q是正数,
∵{a1,a2,a3}?{-4,-3,-2,0,1,2,3,4},
∴a1=4,a2=2,a3=1,∴q=
=
=
,
∴an=a1qn-1=
.
(Ⅱ)由(1)得,bn=
an=
,
当n=2k(k∈N*)时,bn=0,
当n=2k-1(k∈N*)时,bn=an,
即bn=
∴b1+b2+b3+…+b2n-2+b2n-1=a1+a3+…+a2n-1
=
=
[1-(
)n]<
.
∵{a1,a2,a3}?{-4,-3,-2,0,1,2,3,4},
∴a1=4,a2=2,a3=1,∴q=
| a2 |
| a1 |
| 1 |
| 4 |
| 1 |
| 2 |
∴an=a1qn-1=
| 8 |
| 2n |
(Ⅱ)由(1)得,bn=
| 1-(-1)n |
| 2 |
| 8[1-(-1)n] |
| 2n+1 |
当n=2k(k∈N*)时,bn=0,
当n=2k-1(k∈N*)时,bn=an,
即bn=
|
∴b1+b2+b3+…+b2n-2+b2n-1=a1+a3+…+a2n-1
=
4[1-(
| ||
1-
|
=
| 16 |
| 3 |
| 1 |
| 4 |
| 16 |
| 3 |
点评:本题考查了等比数列是递减数列的特点,通项公式和前n项和公式应用,考查了分类讨论思想.
练习册系列答案
相关题目