题目内容
已知函数y=log2
•log4
(2≤x≤4),
(1)求当x=4
时对应的y值;
(2)令t=log2x,求y关于t的函数关系式,t的范围;
(3)求该函数的值域.
| x |
| 4 |
| x |
| 2 |
(1)求当x=4
| 2 |
| 3 |
(2)令t=log2x,求y关于t的函数关系式,t的范围;
(3)求该函数的值域.
分析:(1)由函数y的解析式,利用对数的运算法则求得当x=4
时对应的y=log2
•log4
=log2 (2-
)•log4(
) 的值.
(2)令t=log2x,则 y=(log2x-2)•(log4x-log42)=
(t2-3t+2).再根据2≤x≤4,可得t的范围.
(3)y=
(t2-3t+2)=
(t-
)2-
,再利用二次函数的性质求得函数y的值域.
| 2 |
| 3 |
4
| ||
| 4 |
4
| ||
| 2 |
| 2 |
| 3 |
4
| ||
4
|
(2)令t=log2x,则 y=(log2x-2)•(log4x-log42)=
| 1 |
| 2 |
(3)y=
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 8 |
解答:解:(1)∵函数y=log2
•log4
(2≤x≤4),
∴当x=4
时对应的y值为 log2
•log4
=log2 (2-
)•log4(
)=(-
)•log4(4
)=-
×
=-
.
(2)令t=log2x,则 y=(log2x-2)•(log4x-log42)=(log2x-2)•(
log2x-
)=
t2-
t+1=
(t2-3t+2)=
(t-1)(t-2).
再根据2≤x≤4,可得1≤t≤2.
(3)解:y=
(t2-3t+2)=
(t-
)2-
.
故当t=
时,y取最小值-
,当t=2或1时,y取最大值0,
∴该函数的值域为[-
,0].
| x |
| 4 |
| x |
| 2 |
∴当x=4
| 2 |
| 3 |
4
| ||
| 4 |
4
| ||
| 2 |
| 2 |
| 3 |
4
| ||
4
|
| 2 |
| 3 |
| 1 |
| 6 |
| 2 |
| 3 |
| 1 |
| 6 |
| 1 |
| 9 |
(2)令t=log2x,则 y=(log2x-2)•(log4x-log42)=(log2x-2)•(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
再根据2≤x≤4,可得1≤t≤2.
(3)解:y=
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 8 |
故当t=
| 3 |
| 2 |
| 1 |
| 8 |
∴该函数的值域为[-
| 1 |
| 8 |
点评:本题主要考查对数的运算性质,二次函数的性质应用,属于中档题.
练习册系列答案
相关题目