题目内容
13.已知数列 {an}满足 a1=1,an-an+1=$\frac{{2{a_n}{a_{n+1}}}}{{n({n+1})}}(n∈{N^*})$,则 an=$\frac{n}{3n-2}$.分析 把已知的数列递推式变形,得到即$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=2(\frac{1}{n}-\frac{1}{n+1})$,然后利用累加法求得数列通项公式.
解答 解:由an-an+1=$\frac{{2{a_n}{a_{n+1}}}}{{n({n+1})}}(n∈{N^*})$,得
$\frac{{a}_{n}-{a}_{n+1}}{{a}_{n}{a}_{n+1}}=\frac{2}{n(n+1)}=2(\frac{1}{n}-\frac{1}{n+1})$,
即$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=2(\frac{1}{n}-\frac{1}{n+1})$,
∴$\frac{1}{{a}_{n}}=(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}})+(\frac{1}{{a}_{n-1}}-\frac{1}{{a}_{n-2}})+…+(\frac{1}{{a}_{2}}-\frac{1}{{a}_{1}})+\frac{1}{{a}_{1}}$(n≥2)
=$2(\frac{1}{n-1}-\frac{1}{n}+\frac{1}{n-2}-\frac{1}{n-1}+…\frac{1}{1}-\frac{1}{2})+1$
=$2(1-\frac{1}{n})+1$=$\frac{3n-2}{n}$(n≥2).
∴${a}_{n}=\frac{n}{3n-2}$(n≥2).
当n=1时,上式成立.
∴${a}_{n}=\frac{n}{3n-2}$.
故答案为:${a}_{n}=\frac{n}{3n-2}$.
点评 本题考查了数列递推式,考查了裂项相消法求数列的和,是中档题.
| A. | a<b<c | B. | a<c<b | C. | b<c<a | D. | c<b<a |
| A. | [4,6] | B. | [5,6] | C. | [4,5] | D. | [3,6] |