题目内容

求复合函数的导数

(1)ysin2xcos(2x1)3 (2)y

答案:
解析:

解:(1)y′=(sin2x)′-[cos(2x+1)3]′

=2sinx·(sinx)′+sin(2x+1)3·[(2x+1)3]′

=2sinx·cosx+sin(2x+1)3·3(2x+1)2·2

=sin2x+sin(2x+1)3·6·(2x+1)2

(2)y′=[(x3-3x2+5)]′

=-(x3-3x2+5)·(x3-3x2+5)′

=-(x3-3x2+5)·(3x2-6x)

=-

=-


提示:

对原式进行必要的变形,分清复合的方式,正确求导.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网