题目内容

在锐角△ABC中,角A,B,C的对边的长分别为a,b,c,已知b=5,sinA=
7
4
S△ABC=
15
7
4

(I)求c的值;          
(II)求sinC的值.
(I)由b=5,sinA=
7
4

S△ABC=
1
2
bcsinA=
15
7
4
,(2分)
可得
7
8
×5c=
15
7
4

解得c=6;(4分)
(II)由锐角△ABC中sinA=
7
4
可得:cosA=
3
4
,(6分)
由余弦定理可得:a2=b2+c2-2bc×cosA=25+36-60×
3
4
=16
,(8分)
有:a=4.(9分)
由正弦定理:
c
sinC
=
a
sinA
,(10分)
sinC=
csinA
a
=
7
4
4
=
3
7
8
.(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网