题目内容

15.已知Sn是数列{an}的前n项和,且Sn=2an-2n对n∈N*成立,
(1)证明数列{an+2}是等比数列,并求出数列{an}的通项公式;
(2)求数列{nan}的前n项和Tn

分析 (1)利用递推关系化简得an=2an-1+2,变形为an+2=2(an-1+2),即可证明;
(2)利用“错位相减法”与等比数列数列的前n项和公式即可得出.

解答 (1)证明:由Sn=2an-2n对n∈N*成立,当n=1时,a1=S1,故a1=2.
当n≥2时,由an=Sn-Sn-1,化简得an=2an-1+2,即an+2=2(an-1+2),且a1+2=4.
故数列{an+2}是等比数列,公比为2,首项为4,
∴an=2n+1-2.
(2)解:由(1)知:nan=n•2n+1-2n.
令An=22+2×23+3×24+…+n•2n+1
∴2An=23+2×24+…+n•2n+2
∴-An=22+23+…+2n+1-n•2n+2=$\frac{4({2}^{n}-1)}{2-1}$-n•2n+2=(1-n)•2n+2-4,
∴An=(1-n)•2n+2-4,
∴Tn=(n-1)2n+2+4-n(n+1).

点评 本题考查了“错位相减法”、等比数列数列的前n项和公式、递推关系的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网