题目内容

下列函数中,既在(0,π)上是增函数,又是以2π为最小正周期的偶函数是


  1. A.
    y=|sinx|
  2. B.
    y=1-数学公式
  3. C.
    y=2cosx
  4. D.
    y=tan数学公式
B
分析:题目中有“在(0,π)上单调递增,以2π为最小正周期,偶函数”三个条件,只要有一个不满足,就可以排除.
由于|sin(x+π)|=|sinx|?y=|sinx|是以π为最小正周期的函数,可排除A;y=2cosx在(0,π)上是减函数,可排除C;
y=tan为奇函数,可排除D;问题即可解决.
解答:∵|sin(x+π)|=|sinx|,
∴y=|sinx|是以π为最小正周期的函数,可排除A;
又y=2cosx在(0,π)上是减函数,可排除C;
∵tan(-)=-tan
∴y=tan为奇函数,可排除D;
y=1-=-cosx满足“在(0,π)上单调递增,以2π为最小正周期,偶函数”三个条件,因此B正确.
故选B.
点评:本题考查余弦函数的单调性及奇偶性,二倍角的余弦及三角函数的周期性,着重考查三角函数的性质及应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网