题目内容

4.求函数y=lg(x2+x-6)的单调增区间是(  )
A.$(-∞,-\frac{1}{2})$B.$(-\frac{1}{2},+∞)$C.(2,+∞)D.(-∞,-3)

分析 令t=x2+x-6>0,求得函数的定义域为{x|x<-3,或x>2},且 y=lgt,本题即求函数t在定义域为{x|x<-3,或x>2}内的增区间.再利用二次函数的性质可得函数t在定义域内的增区间.

解答 解:令t=x2+x-6>0,求得x<-3,或x>2,故函数的定义域为{x|x<-3,或x>2},且 y=lgt,
故本题即求函数t在定义域为{x|x<-3,或x>2}内的增区间.
再利用二次函数的性质可得函数t在定义域为{x|x<-3,或x>2}内的增区间 (2,+∞),
故选:C.

点评 本题主要考查复合函数的单调性,对数函数、二次函数的性质,体现了转化的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网