题目内容
若命题“?x∈R,x2+ax+1<0”是真命题,则实数a的取值范围为 。
a∈(-∞,-2)∪(2,+∞)
【解析】
试题分析:∵命命题“存在实数x,使x2+ax+1<0”的否定是假命题,∴原命题为真命题,即“存在实数x,使x2+ax+1<0”为真命题,∴△=a2-4>0=∴a<-2或a>2,故答案为:a<-2或a>2.
考点:命题的真假判断与应用.
在△ABC中,,,,则边的长为( )
A. B. C. D.
已知命题:所有有理数都是实数,命题正数的对数都是负数,则下列命题中是真命题的是( )
A. B.
C. D.
设A,B两点的坐标分别为(-1,0),(1,0),条件甲:·>0;条件乙:点C的坐标是方程的解,则甲是乙的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
如图,椭圆过点P(1, ),其左、右焦点分别为F1,F2,离心率e=, M, N是直线x=4上的两个动点,且·=0.
(1)求椭圆的方程;
(2)求MN的最小值;
(3)以MN为直径的圆C是否过定点?
已知某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的体积为V1,直径为4的球的体积为V2,则V1:V2等于( )
A.1:2
B.2:1
C.1:1
D.1:4
已知椭圆的离心率与双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.
(2)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(3)设第(2)问中的与轴交于点,不同的两点在上,且满足,求的取值范围.
设为两两不重合的平面,为两两不重合的直线,给出下列四个命题:
(1)若,则;
(2)若,,,则;
(3)若,,则;
(4)若,,,,则.
其中正确的命题是( )
A、(1)(3) B、(2)(3)
C、(2)(4) D、(3)(4)
使不等式成立的充分不必要条件是( )