题目内容
已知各项均为正数的等比数列{an}的前n项和为Sn,a1=3,S3=39.
(1)求数列{an}通项公式;
(2)若在an与an+1之间插入n个数,使得这n+2个数组成一个公差为dn的等差数列,求证:
+
+…+
<
.
(1)求数列{an}通项公式;
(2)若在an与an+1之间插入n个数,使得这n+2个数组成一个公差为dn的等差数列,求证:
| 1 |
| d1 |
| 1 |
| d2 |
| 1 |
| dn |
| 5 |
| 8 |
(Ⅰ)∵a1=3,S3=39,∴q≠1,
=39,
∴1+q+q2=13.∴q=3,或q=-4(舍),
故an=3n.…(6分)
(Ⅱ)∵an=3n,则an+1=3n+1,由题知:
an+1=an+(n+1)dn,则dn=
.
由上知:
=
,
所以Tn=
+
+…+
=
+
+…+
,
Tn=
+
+…+
,
所以
Tn=
+
(
+
+…+
)-
=
+
×
-
=
-
,
所以Tn=
-
<
.
故
+
+…+
<
.…(12分)
| 3(1-q3) |
| 1-q |
∴1+q+q2=13.∴q=3,或q=-4(舍),
故an=3n.…(6分)
(Ⅱ)∵an=3n,则an+1=3n+1,由题知:
an+1=an+(n+1)dn,则dn=
| 2×3n |
| n+1 |
由上知:
| 1 |
| dn |
| n+1 |
| 2×3n |
所以Tn=
| 1 |
| d1 |
| 1 |
| d2 |
| 1 |
| dn |
| 2 |
| 2×3 |
| 3 |
| 2×32 |
| n+1 |
| 2×3n |
| 1 |
| 3 |
| 2 |
| 2×32 |
| 3 |
| 2×33 |
| n+1 |
| 2×3n+1 |
所以
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 2 |
| 1 |
| 3 3 |
| 1 |
| 3 n |
| n+1 |
| 2×3n+1 |
=
| 1 |
| 3 |
| 1 |
| 2 |
| ||||
1-
|
| n+1 |
| 2×3n+1 |
=
| 5 |
| 12 |
| 5+2n |
| 4×3n+1 |
所以Tn=
| 5 |
| 8 |
| 5+2n |
| 8×3n |
| 5 |
| 8 |
故
| 1 |
| d1 |
| 1 |
| d2 |
| 1 |
| dn |
| 5 |
| 8 |
练习册系列答案
相关题目