题目内容

设函数f(x)(x∈R)满足∵f(-x)=f(x),f(x+2)=f(x),,则y=f(x)的图象可能是


  1. A.
  2. B.
  3. C.
  4. D.
B
分析:由定义知,函数为偶函数,先判断A、C两项,图象对应的函数为奇函数,不符合题意;再取特殊值x=0,可得f(2)=f(0),可知B选项符合要求.
解答:∵f(-x)=f(x)
∴函数图象关于y轴对称,排除A、C两个选项
又∵f(x+2)=f(x)
∴函数的周期为2,取x=0可得f(2)=f(0)
排除D选项,说明B选项正确
故答案为B
点评:利用函数图象的对称性是判断一个函数为奇函数或偶函数的一个重要指标,周期性与奇偶性相结合是函数题的一种常规类型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网