题目内容
【题目】甲、乙两家鞋帽商场销售同一批品牌运动鞋,每双标价为800元,甲、乙两商场销售方式如下:在甲商场买一双售价为780元,买两双每双售价为760元,依次类排,每多买一双则所买各双售价都再减少20元,但每双售价不能低于440元;乙商场一律按标价的75%销售.
(1)分别写出在甲、乙两商场购买
双运动鞋所需费用的函数解析式
和
;
(2)某单位需购买一批此类品牌运动鞋作为员工福利,问:去哪家商场购买花费较少?
【答案】(1)
,
;(2)见解析
【解析】
(1)结合甲商场的销售方式,可得
时,去甲商场购买的单价为
元,
时,去甲商场购买的单价为440元;去乙商场购买单价为
元,进而可求出
和
的解析式;
(2)分
和
两种情况,讨论
和
的大小关系,即可求出答案.
(1)由题意,
,
由
,可得当
时,去甲商场购买运动鞋的单价为
元,此时所需费用为
;当
时,去甲商场购买运动鞋的单价为440元,所需费用为
元;
去乙商场购买运动鞋单价一直为
元,所需费用为
元.
则
,
.
(2)当
且
时,
成立;
当
且
时,
令
,解得
,
令
,解得
,
令
,解得
,
所以,该单位购买少于10双,去乙商场花费较少,若购买10双,则去两家商场花费相同,若购买超过10双,则去甲商场花费较少.
【题目】为了让学生更多的了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:
序号 | 分组(分数) | 组中值 | 频数(人数) | 频率 |
1 |
| 65 | ① | 0.12 |
2 |
| 75 | 20 | ② |
3 |
| 85 | ③ | 0.24 |
4 |
| 95 | ④ | ⑤ |
合计 | 50 | 1 |
(1)填充频率分布表中的空格;
(2)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名同学获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的
的值.
![]()
【题目】某桶装水经营部每天的房租、人员工资等固定成本为300元,每桶水的进价是8元,销售单价与日均销售量的关系如表所示:
销售单价/元 | 9 | 10 | 11 | 12 | 13 | 14 |
日均销售量/桶 | 550 | 500 | 450 | 400 | 350 | 300 |
请根据以上数据分析,这个店怎样定每桶水的单价才能获得最大利润?最大利润是多少?