题目内容

【题目】(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率代替最高气温位于该区间的概率。

(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?

【答案】

(1的分布列为

(2)当时,的数学期望达到最大值。

【解析】

(1)由题意知,所有的可能取值为200,300,500,由表格数据知

.

因此分布列为

0.2

0.4

0.4

由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑

时,

若最高气温不低于25,则Y=6n-4n=2n

若最高气温位于区间,则Y=6×300+2(n-300)-4n=1200-2n;

若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;

因此EY=2n×0.4+(1200-2n)×0.4+(800-2n) ×0.2=640-0.4n

时,

若最高气温不低于20,则Y=6n-4n=2n;

若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;

因此EY=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n

所以n=300时,Y的数学期望达到最大值,最大值为520元。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网