题目内容
4、若命题“?x∈R,使x2+(a-1)x+1<0”是假命题,则实数a的取值范围为( )
分析:由命题“?x∈R,使x2+(a-1)x+1<0”是假命题,知?x∈R,使x2+(a-1)x+1≥0,由此能求出实数a的取值范围.
解答:解:∵命题“?x∈R,使x2+(a-1)x+1<0”是假命题,
∴?x∈R,使x2+(a-1)x+1≥0,
∴△=(a-1)2-4≤0,
∴-1≤a≤3.
故选D.
∴?x∈R,使x2+(a-1)x+1≥0,
∴△=(a-1)2-4≤0,
∴-1≤a≤3.
故选D.
点评:本题考查命题的真假判断和应用,解题时要注意由命题“?x∈R,使x2+(a-1)x+1<0”是假命题,知?x∈R,使x2+(a-1)x+1≥0,由此进行等价转化,能求出结果.
练习册系列答案
相关题目