题目内容

1.在数列{an}中,a1=1,an+1•an=an-an+1
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=ln$\frac{{a}_{n+2}}{{a}_{n}}$,求数列{bn}的前n项和Sn

分析 (I)a1=1,an+1•an=an-an+1,变形$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=1,利用等差数列的通项公式即可得出.
(II)bn=ln$\frac{{a}_{n+2}}{{a}_{n}}$=$ln\frac{n}{n+2}$=lnn-ln(n+2),利用“累加求和”即可得出.

解答 解:(I)∵a1=1,an+1•an=an-an+1
∴$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}$=1,
∴数列$\{\frac{1}{{a}_{n}}\}$是等差数列,首项为1,公差为1.
∴$\frac{1}{{a}_{n}}=1+n-1$=n,解得an=$\frac{1}{n}$.
(II)bn=ln$\frac{{a}_{n+2}}{{a}_{n}}$=$ln\frac{n}{n+2}$=lnn-ln(n+2),
∴数列{bn}的前n项和Sn=(ln1-ln3)+(ln2-ln4)+(ln3-ln5)+…+(ln(n-1)-ln(n+1))+(lnn-ln(n+2))
=ln2-ln(n+1)-ln(n+2)
=$ln\frac{2}{(n+1)(n+2)}$.

点评 本题考查了等差数列的通项公式、对数的运算性质,考查了变形能力,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网