题目内容
已知|| a |
| b |
| a |
| b |
(1)|
| a |
| b |
(2)
| a |
| b |
| a |
| b |
分析:本题考查的知识点是数量积表示两个向量的夹角及向量的模,
(1)由|
|=3,|
|=4,
与
的夹角为60°,故
2=9,
2=16,
•
=6,代入|
+
|2=
2+
2+2
•
易得到|
+
|2的值,进而求出|
+
|;
(2)要求
+
与
-
的夹角θ的余弦值,我们可以根据cosθ=
,结合(1)的结论,我们求出相应的量,代入公式即可求解.
(1)由|
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
(2)要求
| a |
| b |
| a |
| b |
(
| ||||||||
|
|
解答:解:(1)|
+
|2=
2+
2+2
•
(2分)
=9+16+2×3×4×cos60=37
∴|
+
|=
(6分)
(2)|
-
|2=
2+
2-2
•
=9+16-2×3×4×cos60°
=13
∴|
-
|=
(8分)
cosθ=
(10分)
=
=-
(12分)
| a |
| b |
| a |
| b |
| a |
| b |
=9+16+2×3×4×cos60=37
∴|
| a |
| b |
| 37 |
(2)|
| a |
| b |
| a |
| b |
| a |
| b |
=9+16-2×3×4×cos60°
=13
∴|
| a |
| b |
| 13 |
cosθ=
(
| ||||||||
|
|
=
| 9-16 | ||||
|
7
| ||
| 481 |
点评:向量的数量积运算中,要熟练掌握如下性质:
•
=
2=|
|2,
•
=|
|•|
|cosθ,另外cosθ=
是向量中求夹角的唯一公式,要求大家熟练掌握
| a |
| a |
| a |
| a |
| a |
| b |
| a |
| b |
| ||||
|
|
练习册系列答案
相关题目
已知|
|=3,|
|=2
,
⊥(
+
),则
在
上的投影为( )
| a |
| b |
| 3 |
| a |
| b |
| a |
| a |
| b |
| A、-3 | ||||
| B、3 | ||||
C、-
| ||||
D、
|