题目内容
数列{an},a1=1,an+1=2an-n2+3n(n∈N*)(1)是否存在常数λ、u,使得数列{an+λn2+um}是等比数列,若存在,求出λ、u的值,若不存在,说明理由.
(2)设bn=
| 1 |
| an+n-2n-1 |
| 6n |
| (n+1)(2n+1) |
| 5 |
| 3 |
分析:(1)设an+1=2an-n2+3n,an+1=2an-λn2+(μ-2λ)n-λ-μ,由题设导出an+1=2an-n2+3n.存在λ=-1,μ=1使得数列{an+λn2+μn}是等比数列.
(2)an=2n-1+n2-n,bn=
=
,当n≥3时,由bn=
>
=
-
得S=b1+b2+b3+…+bn>(1-
)+(
-
)+(
-
)+…+(
-
),由此能够导出当n≥2时,
<Sn<
.
(2)an=2n-1+n2-n,bn=
| 1 |
| an+n-2n-1 |
| 1 |
| n2 |
| 1 |
| n2 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 6n |
| (n+1)(2n+1) |
| 5 |
| 3 |
解答:(1)解:设an+1=2an-n2+3n,
可化为an+1+λ(n+1)2+μ(n+1)=2(an-λn2+μn),
即an+1=2an-λn2+(μ-2λ)n-λ-μ(2分)
故
解得
(4分)
∴an+1=2an-n2+3n
可化为(5分)
又a1+12+1≠0(6分)
故存在λ=-1,μ=1 使得数列{an+λn2+μn}是等比数列(7分)
(2)证明:由(1)得an-n2+n=(a1-12+1)•2n-1
∴an=2n-1+n2-n,
故bn=
=
(8分)
∵bn=
=
<
=
-
(9分)
∴n≥2时,Sn=b1+b2+b3+…+bn<1
+(
-
)+(
-
)+…+(
-
)
=1+
-
<
(11分)
现证Sn>
(n≥2).
当n=2时 Sn=b1+b2=
=
而
=
=
,
>
,
故n=2时不等式成立(12分)
当n≥3时,由bn=
>
=
-
得
Sn=b1+b2+b3+…+bn>(1-
)+(
-
)+(
-
)+…+(
-
)
=1-
=
,且由2n+1>6 得1>
,
∴Sn>
>
(14分)
可化为an+1+λ(n+1)2+μ(n+1)=2(an-λn2+μn),
即an+1=2an-λn2+(μ-2λ)n-λ-μ(2分)
故
|
|
∴an+1=2an-n2+3n
可化为(5分)
又a1+12+1≠0(6分)
故存在λ=-1,μ=1 使得数列{an+λn2+μn}是等比数列(7分)
(2)证明:由(1)得an-n2+n=(a1-12+1)•2n-1
∴an=2n-1+n2-n,
故bn=
| 1 |
| an+n-2n-1 |
| 1 |
| n2 |
∵bn=
| 1 |
| n2 |
| 4 |
| 4n2 |
| 4 |
| 4n2-1 |
| 2 |
| 2n-1 |
| 2 |
| 2n+1 |
∴n≥2时,Sn=b1+b2+b3+…+bn<1
+(
| 2 |
| 3 |
| 2 |
| 5 |
| 2 |
| 5 |
| 2 |
| 7 |
| 2 |
| 2n-1 |
| 2 |
| 2n+1 |
=1+
| 2 |
| 3 |
| 2 |
| 2n+1 |
| 5 |
| 3 |
现证Sn>
| 6n |
| (n+1)(2n+1) |
当n=2时 Sn=b1+b2=
| 1 |
| 4 |
| 5 |
| 4 |
而
| 6n |
| (n+1)(2n+1) |
| 12 |
| 3×5 |
| 4 |
| 5 |
| 5 |
| 4 |
| 4 |
| 5 |
故n=2时不等式成立(12分)
当n≥3时,由bn=
| 1 |
| n2 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
Sn=b1+b2+b3+…+bn>(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
| 6 |
| 2n+1 |
∴Sn>
| n |
| n+1 |
| 6n |
| (n+1)(2n+1) |
点评:本题考查数列与不等式的综合应用,解题时要认真审题,仔细解答,注意计算能力的培养.
练习册系列答案
相关题目