题目内容

14.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{3{x}^{2},x∈[\frac{1}{2},1]}\end{array}\right.$,若存在常数t使得方程f(x)=t有两个不等的实根x1,x2(x1<x2),那么x1•f(x2)的取值范围为(  )
A.[$\frac{3}{4}$,1)B.[$\frac{1}{8}$,$\frac{\sqrt{3}}{6}$)C.[$\frac{3}{16}$,$\frac{1}{2}$)D.[$\frac{3}{8}$,3)

分析 作出f(x)的图象,以及直线y=t,方程f(x)=t有两个不等的实根,即为直线y=t和y=f(x)的图象有两个交点,分别求得x1,x2的范围,由不等式的性质,即可得到所求范围.

解答 解:函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈[0,\frac{1}{2})}\\{3{x}^{2},x∈[\frac{1}{2},1]}\end{array}\right.$,
作出f(x)的图象,以及直线y=t,
方程f(x)=t有两个不等的实根,即为
直线y=t和y=f(x)的图象有两个交点,
由x+$\frac{1}{2}$=$\frac{3}{4}$,可得x=$\frac{1}{4}$,
由1=3x2,可得x=$\frac{\sqrt{3}}{3}$(负的舍去),
即有$\frac{1}{4}$≤x1<$\frac{1}{2}$,$\frac{1}{2}$≤x2≤$\frac{\sqrt{3}}{3}$,即$\frac{1}{4}$≤x22≤$\frac{1}{3}$,
则x1•f(x2)=3x1•x22∈[$\frac{3}{16}$,$\frac{1}{2}$).
故选C.

点评 本题考查函数和方程的转化思想,考查数形结合的思想方法,同时考查不等式的性质和运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网