ÌâÄ¿ÄÚÈÝ
£¨2012•·áÌ¨ÇøÒ»Ä££©ÉèÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒSn=2n-1£®ÊýÁÐ{bn}Âú×ãb1=2£¬bn+1-2bn=8an£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Ö¤Ã÷£ºÊýÁÐ{
}ΪµÈ²îÊýÁУ¬²¢Çó{bn}µÄͨÏʽ£»
£¨¢ó£©ÉèÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃ²»µÈʽ(-1)n¦Ë£¼1+
£¨n¡ÊN*£©ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ö¦ËµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Ö¤Ã÷£ºÊýÁÐ{
| bn |
| 2n |
£¨¢ó£©ÉèÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃ²»µÈʽ(-1)n¦Ë£¼1+
| Tn-6 |
| Tn+1-6 |
·ÖÎö£º£¨¢ñ£©¸ù¾ÝÊýÁеÝÍÆÊ½£¬ÔÙдһʽ£¬Á½Ê½Ïà¼õ£¬¼´¿ÉÇóµÃÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©¸ù¾Ýbn+1-2bn=8an£¬¿ÉµÃ
-
=2£¬´Ó¶ø¿ÉµÃ{
}ÊÇÊ×ÏîΪ
=1£¬¹«²îΪ2µÄµÈ²îÊýÁУ¬ÓÉ´Ë¿ÉÇó{bn}µÄͨÏʽ£»
£¨¢ó£©´æÔÚ³£Êý¦ËʹµÃ²»µÈʽ(-1)n¦Ë£¼1+
£¨n¡ÊN*£©ºã³ÉÁ¢£®ÀûÓôíλÏà¼õ·¨ÇóÊýÁеĺͣ¬ÔÙ·ÖÀàÌÖÂÛ£¬ÀûÓ÷ÖÀë²ÎÊý·¨£¬¼´¿ÉµÃµ½½áÂÛ£®
£¨¢ò£©¸ù¾Ýbn+1-2bn=8an£¬¿ÉµÃ
| bn+1 |
| 2n+1 |
| bn |
| 2n |
| bn |
| 2n |
| b1 |
| 21 |
£¨¢ó£©´æÔÚ³£Êý¦ËʹµÃ²»µÈʽ(-1)n¦Ë£¼1+
| Tn-6 |
| Tn+1-6 |
½â´ð£º£¨¢ñ£©½â£ºµ±n=1ʱ a1=S1=21-1=1£»
µ±n¡Ý2ʱ an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1£¬
ÒòΪa1=1ÊʺÏͨÏʽan=2n-1£®
ËùÒÔ an=2n-1£¨n¡ÊN*£©£® ¡£¨5·Ö£©
£¨¢ò£©Ö¤Ã÷£ºÒòΪ bn+1-2bn=8an£¬ËùÒÔ bn+1-2bn=2n+2£¬¼´
-
=2£®
ËùÒÔ{
}ÊÇÊ×ÏîΪ
=1£¬¹«²îΪ2µÄµÈ²îÊýÁУ®
ËùÒÔ
=1+2(n-1)=2n-1£¬
ËùÒÔbn=(2n-1)•2n£® ¡£¨9·Ö£©
£¨¢ó£©½â£º´æÔÚ³£Êý¦ËʹµÃ²»µÈʽ(-1)n¦Ë£¼1+
£¨n¡ÊN*£©ºã³ÉÁ¢£®
ÒòΪTn=1•21+3•22+5•23+¡+(2n-3)•2n-1+(2n-1)•2n¢Ù
ËùÒÔ2Tn=1•22+3•23+¡+£¨2n-5£©•2n-1+£¨2n-3£©•2n+£¨2n-1£©•2n+1¢Ú
ÓÉ¢Ù-¢ÚµÃ-Tn=2+23+24+¡+2n+1-(2n-1)•2n+1£¬
»¯¼òµÃTn=(2n-3)•2n+1+6£®
ÒòΪ
=
=
=
-
=
-
£¬
£¨1£©µ±nÎªÆæÊýʱ£¬(-1)¦Ë£¼1+
£¬ËùÒԦˣ¾-1-
£¬¼´¦Ë£¾-
+
£®
ËùÒÔµ±n=1ʱ£¬-
+
µÄ×î´óֵΪ-
£¬ËùÒÔÖ»Ðè¦Ë£¾-
£»
£¨2£©µ±nΪżÊýʱ£¬¦Ë£¼1+
£¬ËùÒԦˣ¼
-
£¬
ËùÒÔµ±n=2ʱ£¬
-
µÄ×îСֵΪ
£¬ËùÒÔÖ»Ðè¦Ë£¼
£»
ÓÉ£¨1£©£¨2£©¿ÉÖª´æÔÚ-
£¼¦Ë£¼
£¬Ê¹µÃ²»µÈʽ(-1)n¦Ë£¼1+
£¨n¡ÊN*£©ºã³ÉÁ¢£®¡£¨13·Ö£©
µ±n¡Ý2ʱ an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1£¬
ÒòΪa1=1ÊʺÏͨÏʽan=2n-1£®
ËùÒÔ an=2n-1£¨n¡ÊN*£©£® ¡£¨5·Ö£©
£¨¢ò£©Ö¤Ã÷£ºÒòΪ bn+1-2bn=8an£¬ËùÒÔ bn+1-2bn=2n+2£¬¼´
| bn+1 |
| 2n+1 |
| bn |
| 2n |
ËùÒÔ{
| bn |
| 2n |
| b1 |
| 21 |
ËùÒÔ
| bn |
| 2n |
ËùÒÔbn=(2n-1)•2n£® ¡£¨9·Ö£©
£¨¢ó£©½â£º´æÔÚ³£Êý¦ËʹµÃ²»µÈʽ(-1)n¦Ë£¼1+
| Tn-6 |
| Tn+1-6 |
ÒòΪTn=1•21+3•22+5•23+¡+(2n-3)•2n-1+(2n-1)•2n¢Ù
ËùÒÔ2Tn=1•22+3•23+¡+£¨2n-5£©•2n-1+£¨2n-3£©•2n+£¨2n-1£©•2n+1¢Ú
ÓÉ¢Ù-¢ÚµÃ-Tn=2+23+24+¡+2n+1-(2n-1)•2n+1£¬
»¯¼òµÃTn=(2n-3)•2n+1+6£®
ÒòΪ
| Tn-6 |
| Tn+1-6 |
| (2n-3)•2n+1 |
| (2n-1)•2n+2 |
| 2n-3 |
| 4n-2 |
| 1 |
| 2 |
| 2 |
| 4n-2 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
£¨1£©µ±nÎªÆæÊýʱ£¬(-1)¦Ë£¼1+
| Tn-6 |
| Tn+1-6 |
| Tn-6 |
| Tn+1-6 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
ËùÒÔµ±n=1ʱ£¬-
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
£¨2£©µ±nΪżÊýʱ£¬¦Ë£¼1+
| Tn-6 |
| Tn+1-6 |
| 3 |
| 2 |
| 1 |
| 2n-1 |
ËùÒÔµ±n=2ʱ£¬
| 3 |
| 2 |
| 1 |
| 2n-1 |
| 7 |
| 6 |
| 7 |
| 6 |
ÓÉ£¨1£©£¨2£©¿ÉÖª´æÔÚ-
| 1 |
| 2 |
| 7 |
| 6 |
| Tn-6 |
| Tn+1-6 |
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏ¿¼²éµÈ²îÊýÁеÄÖ¤Ã÷£¬¿¼²éÊýÁеÄÇóºÍ£¬¿¼²é´æÔÚÐÔÎÊÌâµÄ̽¾¿£¬¿¼²é·ÖÀë²ÎÊý·¨µÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿