题目内容

(文)数列{an}的通项公式为an=
2n-1         1≤n≤2
(
1
2
)n      n≥3,n∈N  
lim
n→∞
Sn=
 
分析:由数列的性质可知Sn=1+2+(
1
2
)
3
(
1
2
)
4
 +…+(
1
2
)
n
=3+
1
8
(1-(
1
2
)
n-2
)
1-
1
2
=
13
4
-(
1
2
)
n-2
,由此可以求出
lim
n→∞
Sn的值.
解答:解:∵an=
2n-1         1≤n≤2
(
1
2
)n      n≥3,n∈N  

Sn=1+2+(
1
2
)
3
(
1
2
)
4
 +…+(
1
2
)
n

=3+
1
8
(1-(
1
2
)
n-2
)
1-
1
2

=
13
4
-(
1
2
)
n-2

lim
n→∞
Sn=
lim
n→∞
[
13
4
-(
1
2
)
n-2
]
=
13
4

答案:
13
4
点评:本题考查数列的性质和数列的极限,解题时要注意数列前n项和的具体求法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网