题目内容
(文)数列{an}的通项公式为an=
|
| lim |
| n→∞ |
分析:由数列的性质可知Sn=1+2+(
)3+ (
)4 +…+(
)n=3+
=
-(
)n-2,由此可以求出
Sn的值.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||||
1-
|
| 13 |
| 4 |
| 1 |
| 2 |
| lim |
| n→∞ |
解答:解:∵an=
,
∴Sn=1+2+(
)3+ (
)4 +…+(
)n
=3+
=
-(
)n-2
∴
Sn=
[
-(
)n-2]=
.
答案:
.
|
∴Sn=1+2+(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=3+
| ||||
1-
|
=
| 13 |
| 4 |
| 1 |
| 2 |
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| 13 |
| 4 |
| 1 |
| 2 |
| 13 |
| 4 |
答案:
| 13 |
| 4 |
点评:本题考查数列的性质和数列的极限,解题时要注意数列前n项和的具体求法.
练习册系列答案
相关题目