题目内容
设函数f(x)=a·(b+c),其中向量a=(sinx,-cosx),b=(sinx,-3cosx),c=(-cosx,sinx),x∈R.
(1)求函数f(x)的最大值和最小正周期;
(2)将函数y=f(x)的图象按向量d平移,使平移后得到的图象关于坐标原点成中心对称,求长度最小的d.
答案:
解析:
解析:
|
解:(1)由题意得f(x)=a·(b+c)=(sinx,-cosx)·(sinx-cosx,sinx-3cosx) =sin2x-2sinxcosx+3cos2x=2+cos2x-sin2x= 故f(x)的最大值为 (2)由sin(2x+ 即x= 于是d=( 因为k为正数,要使|d|最小,则只要k=1,此时d=(- |
练习册系列答案
相关题目
已知向量a=(cos
x,sin
x),b=(cos
,sin
),c=(
,-1),其中x∈R,
(1)当a·b=
时,求x值的集合;
(2)设函数f(x)=(a-c)2,求f(x)的最小正周期及
其单调增区间.