题目内容

在直角坐标系xOy中,点P到两点(0,-
3
),(0,
3
)
的距离之和为4,设点P的轨迹为C,直线y=kx+1与C交于A,B两点.
(1)写出C的方程;
(2)若
OA
OB
,求k的值;
(3)若点A在第一象限,证明:当k>0时,恒有|
OA
|>|
OB
|
分析:说明:本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.
解答:解:
(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以(0,-
3
),(0,
3
)
为焦点,长半轴为2的椭圆.它的短半轴b=
22-(
3
)
2
=1

故曲线C的方程为x2+
y2
4
=1
.(3分)
(Ⅱ)设A(x1,y1),B(x2,y2),其坐标满足
x2+
y2
4
=1
y=kx+1.

消去y并整理得(k2+4)x2+2kx-3=0,
x1+x2=-
2k
k2+4
x1x2=-
3
k2+4
.(5分)
OA
OB
,即x1x2+y1y2=0.
而y1y2=k2x1x2+k(x1+x2)+1,
于是x1x2+y1y2=-
3
k2+4
-
3k2
k2+4
-
2k2
k2+4
+1=0

化简得-4k2+1=0,所以k=±
1
2
.(8分)
(Ⅲ)因为A(x1,y1)在椭圆上,所以满足y2=4(1-x2),y12=4(1-x12),
|OA|
2
-
|OB|
2
=
x
2
1
+
y
2
1
-(
x
2
2
+
y
2
2
)
=(x12-x22)+4(1-x12-1+x22)=-3(x1-x2)(x1+x2)=
6k(x1-x2)
k2+4

因为A在第一象限,故x1>0.由x1x2=-
3
k2+4
知x2<0,从而x1-x2>0.又k>0,
|OA|
2
-
|OB|
2
>0

即在题设条件下,恒有
|OA|
|OB|
.(12分)
点评:本题考查椭圆方程的运用以及直线与椭圆的位置关系,难点在与计算量较大,平时应加大训练的力度与方向性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网