题目内容
数列{an}满足an+1=an(1-an+1),a1=1,数列{bn}满足:bn=anan+1,则数列{bn}的前10项和S10=分析:由已知an+1=an(1-an+1)化简得数列{
}是等差数列,即可求出an的通项公式,将其代入bn=anan+1,求出bn的通项公式并将其进行变形,根据变形列举出数列的前10项,求出它们的和即可.
| 1 |
| an |
解答:解:由an+1=an(1-an+1)得:
-
=1,所以得到数列{
}是以1为首项,1为公差的等差数列,
则
=1+(n-1)=n,所以an=
;
而bn=anan+1=
=
-
,则s10=b1+b2+…+b10=1-
+
-
+…+
-
=1-
=
故答案为
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
则
| 1 |
| an |
| 1 |
| n |
而bn=anan+1=
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 10 |
| 1 |
| 11 |
| 1 |
| 11 |
| 10 |
| 11 |
故答案为
| 10 |
| 11 |
点评:本题主要考查由递推公式推导数列的通项公式,学生在求bn通项时要会对
进行变形.
| 1 |
| n(n+1) |
练习册系列答案
相关题目