题目内容

已知命题p:“若m≤0,则x2-2x+m=0有实数解”的逆命题;命题q:“若函数f(x)=lg(x2+2x+a)的值域为R,则a>1”.以下四个结论:
①p是真命题;
②p∧q是假命题;
③p∨q是假命题;
④¬q为假命题.
其中所有正确结论的序号为
②③
②③
分析:根据二次方程根与△的关系及四种命题的定义,可判断命题p的真假;根据对数函数和二次函数的图象和性质,可判断命题q的真假;进而由复合命题真假判断的真值表分析四个结论的正误,可得答案.
解答:解:“若m≤0,则x2-2x+m=0有实数解”的逆命题为“若x2-2x+m=0有实数解,则m≤0”
由x2-2x+m=0有实数解,则△=4-4m≥0得,m≤1,此时m≤0不一定成立
故命题p为假命题,即命题p为假命题,
函数f(x)=lg(x2+2x+a)的值域为R,则a≤1,故命题q为假命题,
故①“p是真命题”错误;②“p∧q是假命题”正确;③“p∨q是假命题”正确;④“¬q为假命题”错误.
故正确结论的序号为②③
故答案为:②③
点评:本题以命题的真假判断为载体考查了四种命题,二次方程,对数函数,二次函数的图象和性质,难度中档.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网