搜索
题目内容
已知集合A={x|-1<x<4},B={x|x<a},若A⊆B,则实数a的满足( )
A.a<4
B.a≤4
C.a>4
D.a≥4
试题答案
相关练习册答案
分析:
根据集合关系A⊆B,利用数轴确定a满足的条件即可.
解答:
解:∵A={x|-1<x<4},B={x|x<a},
∴若A⊆B,
则a≥4,
故选D.
点评:
本题主要考查集合关系的应用,利用数轴是解决此类问题的基本方法,注意区间端点处等号的取舍问题.
练习册系列答案
南通小题考前100练系列答案
河南中考中考必备系列答案
江苏5年经典系列答案
初中毕业学业考试指导丛书系列答案
芒果教辅小学数学应用题系列答案
春雨教育小学数学图解巧练应用题系列答案
龙门书局系列答案
学而思小学数学秘籍系列答案
学林教育小学数学图解应用题系列答案
金博优题典单元练测活页卷系列答案
相关题目
已知集合
A={x|
x-2a
x-(
a
2
+1)
<0},B={x|x<5a+7},若A∪B=B
,则实数a的值范围是
[-1,6]
[-1,6]
.
已知集合
A={x|x
lo
g
1
2
(x+2)>-3
x
2
≤2x+15
,B={x|m+1≤x≤2m-1}
.
(I)求集合A;
(II)若B⊆A,求实数m的取值范围.
已知集合A={x|0<x
2
-x≤2},B={x|x
2
-x+a(1-a)≤0}.
(1)求集合A;
(2)若B∪A=[-1,2],求实数a的取值范围.
已知集合A={x|x
2
+(a+2)x+1=0,x∈R},B={x|lg(x+1)>0},若A∩B=∅,求实数a的取值范围.
已知集合A={x|x
2
+3x-18>0},B={x|x
2
-(k+1)x-2k
2
+2k≤0},若A∩B≠∅,求实数k的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案