题目内容
已知数列{an}的首项a1=
,an+1=
,n=1,2,….
(Ⅰ)求{an}的通项公式;
(Ⅱ)证明:对任意的x>0,an≥
-
(
-x),n=1,2,…;
(Ⅲ)证明:a1+a2+…+an>
.
| 3 |
| 5 |
| 3an |
| 2an+1 |
(Ⅰ)求{an}的通项公式;
(Ⅱ)证明:对任意的x>0,an≥
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3n |
(Ⅲ)证明:a1+a2+…+an>
| n2 |
| n+1 |
(Ⅰ)∵an+1=
,∴
=
+
,
∴
-1=
(
-1),
又
-1=
,
∴(
-1)是以
为首项,
为公比的等比数列.
∴
-1=
•
=
,∴an=
.
(Ⅱ)由(Ⅰ)知an=
>0,
-
(
-x)=
-
(
+1-1-x)=
-
[
-(1+x)]=-
•
+
=-
(
-an)2+an≤an,
∴原不等式成立.
(Ⅲ)由(Ⅱ)知,对任意的x>0,有a1+a2++an≥
-
(
-x)+
-
(
-x)++
-
(
-x)=
-
(
+
++
-nx).
∴取x=
(
+
++
)=
=
(1-
),
则a1+a2++an≥
=
>
.∴原不等式成立.
| 3an |
| 2an+1 |
| 1 |
| an+1 |
| 2 |
| 3 |
| 1 |
| 3an |
∴
| 1 |
| an+1 |
| 1 |
| 3 |
| 1 |
| an |
又
| 1 |
| an |
| 2 |
| 3 |
∴(
| 1 |
| an |
| 2 |
| 3 |
| 1 |
| 3 |
∴
| 1 |
| an |
| 2 |
| 3 |
| 1 |
| 3n-1 |
| 2 |
| 3n |
| 3n |
| 3n+2 |
(Ⅱ)由(Ⅰ)知an=
| 3n |
| 3n+2 |
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3n |
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3n |
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| (1+x)2 |
| 2 |
| 1+x |
| 1 |
| an |
| 1 |
| 1+x |
∴原不等式成立.
(Ⅲ)由(Ⅱ)知,对任意的x>0,有a1+a2++an≥
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3 |
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 32 |
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3n |
| n |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3 |
| 2 |
| 32 |
| 2 |
| 3n |
∴取x=
| 1 |
| n |
| 2 |
| 3 |
| 2 |
| 32 |
| 2 |
| 3n |
| ||||
n(1-
|
| 1 |
| n |
| 1 |
| 3n |
则a1+a2++an≥
| n | ||||
1+
|
| n2 | ||
n+1-
|
| n2 |
| n+1 |
练习册系列答案
相关题目