ÌâÄ¿ÄÚÈÝ
̽¾¿º¯Êýf(x)=x+| 4 |
| x |
| x | ¡ | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | ¡ |
| y | ¡ | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.02 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | ¡ |
º¯Êýf(x)=x+
| 4 |
| x |
£¨1£©º¯Êýf(x)=x+
| 4 |
| x |
£¨2£©Ö¤Ã÷£ºº¯Êýf(x)=x+
| 4 |
| x |
£¨3£©Ë¼¿¼£ºº¯Êýf(x)=x+
| 4 |
| x |
·ÖÎö£º£¨1£©ÀûÓñíÖÐyÖµËæxÖµ±ä»¯µÄÌØµã£¬¿ÉÒÔÖªµÀº¯ÊýÖµÊÇÏȼõºóÔö£¬Ö»ÒªÕÒµ½ÁÙ½çµã¼´¿ÉµÃµ½´ð°¸£®
£¨2£©·¨Ò»£º¸ù¾Ýº¯ÊýµÄ½âÎöʽ£¬Çó³öº¯ÊýµÄµ¼º¯Êý£¬·ÖÎöµ¼º¯ÊýÔÚÇø¼ä£¨0£¬2£©ÉϵķûºÅ£¬¼´¿ÉÅжϳöº¯Êýf(x)=x+
(x£¾0)ÔÚÇø¼ä£¨0£¬2£©Éϵĵ¥µ÷ÐÔ£¬½ø¶øµÃµ½´ð°¸£®
·¨¶þ£ºÈÎÈ¡Çø¼ä£¬£¨0£¬2£©ÉϵÄÈÎÒâÁ½¸öÊýx1£¬x2£¬ÇÒx1£¼x2£®¹¹Ôìf£¨x1£©-f£¨x2£©µÄ²î£¬²¢¸ù¾ÝʵÊýµÄÐÔÖÊÅÐ¶ÏÆä·ûºÅ£¬¸ù¾Ýº¯Êýµ¥µ÷ÐԵ͍Ò壬¼´¿ÉµÃµ½½áÂÛ£®
£¨3£©¸ù¾ÝµÄ½âÎöʽ£¬ÎÒÃÇÒ×Çó³öº¯ÊýÔÚ¶¨ÒåÓòÎªÆæº¯Êý£¬¸ù¾ÝÆæº¯ÊýµÄÐÔÖÊ£¬½áºÏ£¨1£©µÄ½áÂÛ£¬Ò׵õ½½á¹û£®
£¨2£©·¨Ò»£º¸ù¾Ýº¯ÊýµÄ½âÎöʽ£¬Çó³öº¯ÊýµÄµ¼º¯Êý£¬·ÖÎöµ¼º¯ÊýÔÚÇø¼ä£¨0£¬2£©ÉϵķûºÅ£¬¼´¿ÉÅжϳöº¯Êýf(x)=x+
| 4 |
| x |
·¨¶þ£ºÈÎÈ¡Çø¼ä£¬£¨0£¬2£©ÉϵÄÈÎÒâÁ½¸öÊýx1£¬x2£¬ÇÒx1£¼x2£®¹¹Ôìf£¨x1£©-f£¨x2£©µÄ²î£¬²¢¸ù¾ÝʵÊýµÄÐÔÖÊÅÐ¶ÏÆä·ûºÅ£¬¸ù¾Ýº¯Êýµ¥µ÷ÐԵ͍Ò壬¼´¿ÉµÃµ½½áÂÛ£®
£¨3£©¸ù¾ÝµÄ½âÎöʽ£¬ÎÒÃÇÒ×Çó³öº¯ÊýÔÚ¶¨ÒåÓòÎªÆæº¯Êý£¬¸ù¾ÝÆæº¯ÊýµÄÐÔÖÊ£¬½áºÏ£¨1£©µÄ½áÂÛ£¬Ò׵õ½½á¹û£®
½â´ð£º½â£º£¨1£©Óɱí¸ñÖеÄÊý¾Ý£¬ÎÒÃÇÒ׵ãº
º¯Êýf(x)=x+
£¬x¡Ê(0£¬+¡Þ)ÔÚÇø¼ä£¨2£¬+¡Þ£©ÉϵÝÔö£®
µ±x=2ʱ£¬y×îС=4£®£»
£¨2£©·½·¨Ò»£ºÓÉf£¨x£©=x+
£¬
¡àf'£¨x£©=1-
=
£¬
µ±x¡Ê£¨0£¬2£©Ê±£¬¡àf'£¨x£©£¼0£¬
¡àº¯ÊýÔÚ£¨0£¬2£©ÉÏΪ¼õº¯Êý£®
·½·¨¶þ£ºÉèx1£¬x2ÊÇÇø¼ä£¬£¨0£¬2£©ÉϵÄÈÎÒâÁ½¸öÊý£¬ÇÒx1£¼x2.f(x1)-f(x2)=x1+
-(x2+
)=x1-x2+
-
=(x1-x2)(1-
)
=
¡ßx1£¼x2£¬¡àx1-x2£¼0
ÓÖ¡ßx1£¬x2¡Ê£¨0£¬2£©£¬¡à0£¼x1x2£¼4£¬¡àx1x2-4£¼0£¬
¡ày1-y2£¾0¡àº¯ÊýÔÚ£¨0£¬2£©ÉÏΪ¼õº¯Êý£®
£¨3£©¡ßf£¨-x£©=-x-
=-f£¨x£©£¬
¡àf£¨x£©ÊÇÆæº¯Êý£¬
ÓÖÒòΪµ±x=2ʱy×îС=4£¬
ËùÒÔ y=x+
£¬x¡Ê(-¡Þ£¬0)ʱ£¬x=-2ʱ£¬y×î´ó=-4
º¯Êýf(x)=x+
| 4 |
| x |
µ±x=2ʱ£¬y×îС=4£®£»
£¨2£©·½·¨Ò»£ºÓÉf£¨x£©=x+
| 4 |
| x |
¡àf'£¨x£©=1-
| 4 |
| x2 |
| (x-2)(x+2) |
| x2 |
µ±x¡Ê£¨0£¬2£©Ê±£¬¡àf'£¨x£©£¼0£¬
¡àº¯ÊýÔÚ£¨0£¬2£©ÉÏΪ¼õº¯Êý£®
·½·¨¶þ£ºÉèx1£¬x2ÊÇÇø¼ä£¬£¨0£¬2£©ÉϵÄÈÎÒâÁ½¸öÊý£¬ÇÒx1£¼x2.f(x1)-f(x2)=x1+
| 4 |
| x1 |
| 4 |
| x2 |
| 4 |
| x1 |
| 4 |
| x2 |
| 4 |
| x1x2 |
=
| (x1-x2)(x1x2-4) |
| x1x2 |
¡ßx1£¼x2£¬¡àx1-x2£¼0
ÓÖ¡ßx1£¬x2¡Ê£¨0£¬2£©£¬¡à0£¼x1x2£¼4£¬¡àx1x2-4£¼0£¬
¡ày1-y2£¾0¡àº¯ÊýÔÚ£¨0£¬2£©ÉÏΪ¼õº¯Êý£®
£¨3£©¡ßf£¨-x£©=-x-
| 4 |
| x |
¡àf£¨x£©ÊÇÆæº¯Êý£¬
ÓÖÒòΪµ±x=2ʱy×îС=4£¬
ËùÒÔ y=x+
| 4 |
| x |
µãÆÀ£º¶ÔÓÚ¸ø¶¨½âÎöʽµÄº¯Êý£¬ÅжϻòÖ¤Ã÷ÆäÔÚij¸öÇø¼äÉϵĵ¥µ÷ÐÔÎÊÌ⣬¿ÉÒÔ½áºÏ¶¨ÒåÇó½â£¬¿Éµ¼º¯ÊýÒ²¿ÉÀûÓõ¼Êý½âÖ®£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
̽¾¿º¯Êýf(x)=x+
£¬x¡Ê(0£¬+¡Þ)µÄ×îСֵ£¬²¢È·¶¨È¡µÃ×îСֵʱxµÄÖµ£®ÁбíÈçÏ£º
Çë¹Û²ì±íÖÐyÖµËæxÖµ±ä»¯µÄÌØµã£¬Íê³ÉÒÔϵÄÎÊÌ⣮
£¨1£©º¯Êýf(x)=x+
(x£¾0)ÔÚÇø¼ä£¨0£¬2£©Éϵݼõ£¬º¯Êýf(x)=x+
(x£¾0)ÔÚÇø¼ä ÉϵÝÔö£»
£¨2£©º¯Êýf(x)=x+
(x£¾0)£¬µ±x= ʱ£¬y×îС= £»
£¨3£©º¯Êýf(x)=x+
(x£¼0)ʱ£¬ÓÐ×îÖµÂð£¿ÊÇ×î´óÖµ»¹ÊÇ×îСֵ£¿´ËʱxΪºÎÖµ£¿£¨Ö±½Ó»Ø´ð½á¹û£¬²»ÐèÖ¤Ã÷£©
| 4 |
| x |
| x | ¡ | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | ¡ |
| y | ¡ | 8.5 | 5 | 4.17 | 4.05 | 4.005 | 4 | 4.005 | 4.002 | 4.04 | 4.3 | 5 | 5.8 | 7.57 | ¡ |
£¨1£©º¯Êýf(x)=x+
| 4 |
| x |
| 4 |
| x |
£¨2£©º¯Êýf(x)=x+
| 4 |
| x |
£¨3£©º¯Êýf(x)=x+
| 4 |
| x |