题目内容
4.计算:2${\;}^{lo{g}_{4}(lg3-1)^{2}}$+3${\;}^{lo{g}_{81}(lg\frac{1}{3}-2)^{4}}$.分析 利用对数的运算法则、对数恒等式即可得出.
解答 解:原式=${2}^{lo{g}_{2}(1-lg3)}$+${3}^{lo{g}_{3}(2+lg3)}$
=1-lg3+2+lg3
=3.
点评 本题考查了对数的运算性质、对数恒等式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
14.函数y=$\sqrt{lo{g}_{3}x-3}$的定义域是( )
| A. | (9,+∞) | B. | [9.+∞) | C. | [27,+∞) | D. | (27,+∞) |
19.已知函数f(x+2)的定义域为[-2,2],则函数y=f(x-1)-f(x+1)的定义域( )
| A. | [-1,1] | B. | [-2,2] | C. | [1,3] | D. | [-1,5] |
17.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
(1)请画出上表数据的散点图;
(2)产品的产量与相应的生产能耗之间的关系是否具有线性相关性?若具有,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\hat y$=bx+a;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤. 试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
计算第(2)(3)问时可能会用到的参考信息:3×2.5+4×3+5×4+6×4.5=66.5参考公式:回归直线方程:$\widehaty=\widehatbx+\widehata$
线性回归方程中a,b的估计值$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{(\overline x)}^2}}}}$
参考公式:其中,a=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$ $\hat a=\bar y-b\bar x$.
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
(2)产品的产量与相应的生产能耗之间的关系是否具有线性相关性?若具有,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\hat y$=bx+a;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤. 试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
计算第(2)(3)问时可能会用到的参考信息:3×2.5+4×3+5×4+6×4.5=66.5参考公式:回归直线方程:$\widehaty=\widehatbx+\widehata$
线性回归方程中a,b的估计值$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{(\overline x)}^2}}}}$
参考公式:其中,a=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$ $\hat a=\bar y-b\bar x$.