题目内容
| PA |
| PC |
分析:三角形ABP是直角三角形,求出|
|、|
|,再有正弦定理求|
|,结合余弦定理,求出θ的余弦值,求数量积即可.
| PA |
| PB |
| PC |
解答:解:|
|=asinθ,|
|=acosθ,|
|=sin(π-θ)
=
asinθ,
且|
|2=|
|2+|
|2-2|
||
|cos(π-θ)=a2+a2cos2θ+2a2cos2θ
=a2+3a2cos2θ,∴2a2sin2θ=a2+3a2cos2θ,
解得sin2θ=
,
则
•
=|
||
|cos135°= -
a2sin2θ
=-
a2,
故答案为:-
a2.
| PA |
| PB |
| PC |
| a |
| sin45° |
| 2 |
且|
| PC |
| PB |
| BC |
| PB |
| BC |
=a2+3a2cos2θ,∴2a2sin2θ=a2+3a2cos2θ,
解得sin2θ=
| 4 |
| 5 |
则
| PA |
| PC |
| PA |
| PC |
| 2 |
| ||
| 2 |
| 4 |
| 5 |
故答案为:-
| 4 |
| 5 |
点评:本题考查平面向量数量积,正弦定理,余弦定理等知识,是综合题.
练习册系列答案
相关题目