题目内容
已知数列(an}为Sn且有a1=2,3Sn=5an-an-1+3Sn-1 (n≥2)
(I)求数列{an}的通项公式;
(Ⅱ)若bn=(2n-1)an,求数列{bn}前n和Tn
(Ⅲ)若cn=tn[lg(2t)n+lgan+2](0<t<1),且数列{cn}中的每一项总小于它后面的项,求实数t取值范围.
(I)求数列{an}的通项公式;
(Ⅱ)若bn=(2n-1)an,求数列{bn}前n和Tn
(Ⅲ)若cn=tn[lg(2t)n+lgan+2](0<t<1),且数列{cn}中的每一项总小于它后面的项,求实数t取值范围.
(Ⅰ)3Sn-3Sn-1=5an-an-1,∴2an=an-1,
=
∵a1=2,∴an=2(
)n-1=22-n(n∈N*)
(Ⅱ)bn=(2n-1)22-n,
Tn=2+2×(20+2-1+…+22-n) -(2n-1)×21-n=2+
-(2n-1)×21-n
∴Tn=12-(2n+3)×22-n(n∈N*)
(Ⅲ)cn=tn(nlg2+nlgt+lg2-n)=ntnlgt,∵cn<cn+1,∴ntnlgt<(n+1)tn+1lgt
∵0<t<1,∴nlgt<t(n+1)lgt
∵lgt<0,∴n>t(n+1)?t<
,
∵n∈N*,
=
≥
,∴0<t<
| an |
| an-1 |
| 1 |
| 2 |
∵a1=2,∴an=2(
| 1 |
| 2 |
(Ⅱ)bn=(2n-1)22-n,
|
| 1 |
| 2 |
| 2[1-(2-1)n-1] |
| 1-2-1 |
∴Tn=12-(2n+3)×22-n(n∈N*)
(Ⅲ)cn=tn(nlg2+nlgt+lg2-n)=ntnlgt,∵cn<cn+1,∴ntnlgt<(n+1)tn+1lgt
∵0<t<1,∴nlgt<t(n+1)lgt
∵lgt<0,∴n>t(n+1)?t<
| n |
| n+1 |
∵n∈N*,
| n |
| n+1 |
| 1 | ||
1+
|
| 1 |
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目