题目内容

【题目】已知函数f(x)的导函数f′(x)=2+sinx,且f(0)=﹣1,数列{an}是以 为公差的等差数列,若f(a2)+f(a3)+f(a4)=3π,则 =(
A.2016
B.2015
C.2014
D.2013

【答案】B
【解析】解:∵函数f(x)的导函数f′(x)=2+sinx,
可设f(x)=2x﹣cosx+c,
∵f(0)=﹣1,∴﹣1+c=﹣1,可得c=0.
∴f(x)=2x﹣cosx.
∵数列{an}是以 为公差的等差数列,
∴an=a1+(n﹣1)×
∵f(a2)+f(a3)+f(a4)=3π,
∴2(a2+a3+a4)﹣(cosa2+cosa3+cosa4)=3π,
∴6a2+ ﹣cosa2 =3π,
∴6a2 =
令g(x)=6x﹣cos
则g′(x)=6+sin 在R上单调递增,
=0.
∴a2=
= =2015.
故选:B.
【考点精析】认真审题,首先需要了解基本求导法则(若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导),还要掌握等差数列的通项公式(及其变式)(通项公式:)的相关知识才是答题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网