题目内容

13.已知函数f(x)=-x+b的图象过点(2,1),若不等式f(x)≥x2+x-5的解集为A,且A⊆(-∞,a].
(1)求a的取值范围;
(2)解不等式$\frac{{{x^2}-(a+3)x+2a+3}}{f(x)}$<1.

分析 (1)先求出b的值,再解不等式即可得到a的范围.
(2)分类讨论即可求出不等式的解集.

解答 解:(1)依题意,可得b=3f(x)≥x2+x-5即-x+3≥x2+x-5,即x2+2x-8≤0,
∴A=[-4,2]⊆(-∞,a],
∴a≥2
∴a的范围为[2,+∞).                             
(2)$\frac{{{x^2}-(a+3)x+2a+3}}{f(x)}<1$即 $\frac{{{x^2}-(a+2)x+2a}}{x-3}>0$
由(1)知 a≥2,
当a=2时,不等式的解集为(3,+∞);
当2<a<3时,不等式的解集为(2,a)∪(3,+∞);
当a=3时,不等式的解集为(2,3)∪(3,+∞);
当a>3,不等式的解集为(2,3)∪(a,+∞).

点评 本题主要考查了不等式的解法,关键是分类讨论,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网