题目内容
【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且
=2csinA
(1)确定角C的大小;
(2)若c=
,且△ABC的面积为
,求a+b的值.
【答案】
(1)解:∵
=2csinA
∴正弦定理得
,
∵A锐角,
∴sinA>0,
∴
,
又∵C锐角,
∴ ![]()
(2)解:三角形ABC中,由余弦定理得c2=a2+b2﹣2abcosC
即7=a2+b2﹣ab,
又由△ABC的面积得
.
即ab=6,
∴(a+b)2=a2+b2+2ab=25
由于a+b为正,所以a+b=5.
【解析】(1)利用正弦定理把已知条件转化成角的正弦,整理可求得sinC,进而求得C.(2)利用三角形面积求得ab的值,利用余弦定理求得a2+b2的值,最后求得a+b的值.
练习册系列答案
相关题目
【题目】某家父母记录了女儿玥玥的年龄(岁)和身高(单位cm)的数据如下:
年龄x | 6 | 7 | 8 | 9 |
身高y | 118 | 126 | 136 | 144 |
(1)试求y关于x的线性回归方程
=
x+ ![]()
(2)试预测玥玥10岁时的身高.(其中,
=
,
=
﹣
.
【题目】为了普及环保知识,增强环保意识,某校从理科甲班抽取60人,从文科乙班抽取50人参加环保知识测试.
优秀人数 | 非优秀人数 | 总计 | |
甲班 | |||
乙班 | 30 | ||
总计 | 60 |
(Ⅰ)根据题目完成
列联表,并据此判断是否有
的把握认为环保知识成绩优秀与学生的文理分类有关.
(Ⅱ)现已知
,
,
三人获得优秀的概率分别为
,
,
,设随机变量
表示
,
,
三人中获得优秀的人数,求
的分布列及期望
.
附:
, ![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |