题目内容
若数列{an}的前n项和Sn=n2(n∈N*),则
+
+…+
等于( )
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
A、
| ||
B、
| ||
C、
| ||
D、
|
分析:利用数列的前n项和求出数列的通项;求出
,并将其裂成两项的差;将所求的和的各项写出两项的差,依次消项即可求出答案.
| 1 |
| anan+1 |
解答:解:当n=1时,a1=s1=1
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1
总之an=2n-1
∴
=
=
(
-
)
∴
+
+…+
=
(1-
+
-
+
-
+…+
-
)
=
(1-
)
=
故选A
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1
总之an=2n-1
∴
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| anan+1 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
故选A
点评:本题考查由数列前n项和求通项,注意验第一项、考查数列的求和方法:裂项法.
练习册系列答案
相关题目