题目内容
10.(1)求证:DF∥平面ABC;
(2)求三棱锥E-ABD的体积.
分析 (1)取AE中点G,连接DG、FG,由三角形中位线的性质得到FG∥AB,进一步得到FG∥平面ABC,再由已知证出四边形ACDG为平行四边形,
得到DG∥AC,即DG∥平面ABC,由面面平行的判定得平面DFG∥平面ABC,进一步得到DF∥平面ABC;
(2)把三棱锥E-ABD的体积转化为求三棱锥B-AED的体积,然后通过解三角形求得三棱锥B-AED的底面边长和高,则棱锥的体积可求.
解答
(1)证明:如图,
取AE中点G,连接DG、FG,
∵F是BE的中点,∴FG∥AB,则FG∥平面ABC,
∵AE和CD都垂直于平面ABC,∴AE∥CD,
又AE=2,CD=1,∴AG=CD,
则四边形ACDG为平行四边形,∴DG∥AC,则DG∥平面ABC,
又FG∩DG=G,∴平面DFG∥平面ABC,
则DF∥平面ABC;
(2)解:∵AB=2,△ABC是正三角形,∴AC=2,
∵AE⊥平面ABC,∴EA⊥AC,
则${S}_{△EAD}=\frac{1}{2}×2×2=2$,
又平面EACD⊥面ABC,
在平面ABC内过B作BH⊥AC,则AH⊥面ACDE,
在等边三角形ABC中,求得AH=$\sqrt{3}$,
∴${V}_{E-ABD}={V}_{B-AED}=\frac{1}{3}{S}_{AED}•AH$=$\frac{2\sqrt{3}}{3}$.
点评 本小题主要考查空间线面关系、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力,是中档题.
练习册系列答案
相关题目
2.若命题P:?x0∈R,x02+2x0+3≤0,则命题P的否定¬P是( )
| A. | ?x∈R,x2+2x+3>0 | B. | ?x∈R,x2+2x+3≥0 | C. | ?x∈R,x2+2x+3<0 | D. | ?x∈R,x2+2x+3≤0 |