题目内容
若数列{an}满足数列{an}满足a1=2,an+1=
(n∈N*),则该数列的前2013项的乘积
| 1+an | 1-an |
2
2
.分析:先由a1=2,an+1=
推得数列的周期,利用数列的周期性可求得答案.
| 1+an |
| 1-an |
解答:解:由a1=2,an+1=
,得
an+4=
=
=-
=-
=-
=-
=an,
∴4为数列{an}的周期,
又a2=
=
=-3,a3=
=
=-
,a4=
=
=
,
∴a1a2a3a4=2×(-3)×(-
)×
=1,
∴该数列的前2013项的乘积为:(a1a2a3a4)503•a1=2,
故答案为:2.
| 1+an |
| 1-an |
an+4=
| 1+an+3 |
| 1-an+3 |
1+
| ||
1-
|
| 1 |
| an+2 |
| 1 | ||
|
| 1-an+1 |
| 1+an+1 |
1-
| ||
1+
|
∴4为数列{an}的周期,
又a2=
| 1+a1 |
| 1-a1 |
| 1+2 |
| 1-2 |
| 1+a2 |
| 1-a2 |
| 1+(-3) |
| 1-(-3) |
| 1 |
| 2 |
| 1+a3 |
| 1-a3 |
1-
| ||
1-(-
|
| 1 |
| 3 |
∴a1a2a3a4=2×(-3)×(-
| 1 |
| 2 |
| 1 |
| 3 |
∴该数列的前2013项的乘积为:(a1a2a3a4)503•a1=2,
故答案为:2.
点评:本题考查数列递推式及数列的函数特性,属中档题,解决本题的关键是利用递推式推导数列的周期.
练习册系列答案
相关题目