题目内容
(2012•淮北一模)设函数f(x)=
方程f(x)=x有唯一的解,已知f(xn)=xn+1(n∈N﹡)且f(x1)=
(1)求证:数列{
}是等差数列;
(2)若an=
,bn=
,求sn=b1+b2+b3+…+bn;
(3)在(2)的冬件下,若不等式
≤
对一切n∈N﹡均成立,求k的最大值.
| x |
| a(x+2) |
| 2 |
| 3 |
(1)求证:数列{
| 1 |
| xn |
(2)若an=
| 4-3xn |
| xn |
| 1 |
| anan+1 |
(3)在(2)的冬件下,若不等式
| k | ||||||
(
|
| 1 | ||
|
分析:(1)根据ax2+(2a-1)x=0(a≠0)有唯一解,得a=
,利用f(xn)=xn+1,可得xn+1=
,取倒数,即可证得数列{
}是等差数列;
(2)先确定xn=
,从而可得an=
=2n-1,故bn=
=
=
(
-
),由此可求Sn=b1+b2+b3+…+bn.
(3)原不等式即为对一切n∈N*,不等式k≤
恒成立,
设h(n)=
,则h(n)>0,作商,可得h(n)随n递增,从而可得k的最大值.
| 1 |
| 2 |
| 2xn |
| xn+2 |
| 1 |
| xn |
(2)先确定xn=
| 2 |
| n+1 |
| 4-3xn |
| xn |
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
(3)原不等式即为对一切n∈N*,不等式k≤
(
| ||||||
|
设h(n)=
(
| ||||||
|
解答:(1)证明:由题意得:ax2+(2a-1)x=0(a≠0)有唯一解,得a=
∴f(x)=
∵f(xn)=xn+1(n∈N﹡)
∴xn+1=
∴
=
+
,即
-
=
∴数列{
}是等差数列; (4分)
(2)解:由f(x1)=
,即
=
,解得x1=1
故
=
,即xn=
∴an=
=2n-1,
∴bn=
=
=
(
-
)
∴Sn=b1+b2+b3+…+bn=
(1-
+
-
+…+
-
)=
(8分)
(3)解:(理)∵
=
>0
∴原不等式即为对一切n∈N*,不等式k≤
恒成立,
设h(n)=
,则h(n)>0
=
=
>
=1
即h(n)随n递增,故h(n)≥h(1)=
,
所以k的最大值为
(13分)
| 1 |
| 2 |
∴f(x)=
| 2x |
| x+2 |
∵f(xn)=xn+1(n∈N﹡)
∴xn+1=
| 2xn |
| xn+2 |
∴
| 1 |
| xn+1 |
| 1 |
| xn |
| 1 |
| 2 |
| 1 |
| xn+1 |
| 1 |
| xn |
| 1 |
| 2 |
∴数列{
| 1 |
| xn |
(2)解:由f(x1)=
| 2 |
| 3 |
| 2x1 |
| x1+2 |
| 2 |
| 3 |
故
| 1 |
| xn |
| n+1 |
| 2 |
| 2 |
| n+1 |
∴an=
| 4-3xn |
| xn |
∴bn=
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Sn=b1+b2+b3+…+bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
(3)解:(理)∵
| 1 |
| an+1 |
| 2n |
| 2n-1 |
∴原不等式即为对一切n∈N*,不等式k≤
(
| ||||||
|
设h(n)=
(
| ||||||
|
| h(n+1) |
| h(n) |
| 2(n+1) | ||||
|
| 2(n+1) | ||
|
| 2(n+1) | ||
|
即h(n)随n递增,故h(n)≥h(1)=
2
| ||
| 3 |
所以k的最大值为
2
| ||
| 3 |
点评:本题考查数列与不等式的综合,考查等差数列的证明,考查裂项法求数列的和,考查恒成立问题,解题的关键是分离参数,综合性强
练习册系列答案
相关题目