题目内容

已知数列{an}中,a1=
5
6
,an+1=
1
3
an+(
1
2
n+1(n∈N*),数列{bn}对任何n∈N*都有bn=an+1-
1
2
an
(1)求证{bn}为等比数列;
(2)求{bn}的通项公式;
(3)设数列{an}的前n项和为Sn,求
lim
n→∞
Sn
分析:(1)求证{bn}为等比数列,可由等比数列的定义进行证明,由题设条件bn=an+1-
1
2
an,结合a1=
5
6
,an+1=
1
3
an+(
1
2
n+1(n∈N*),研究{bn}相邻两项的关系,再由定义得出结论.
(2)由(1),求出{bn}的首项,写出等比数列的通项公式;
(3)先由bn=an+1-
1
2
an,得到数列{an}的递推关系,结合an+1=
1
3
an+(
1
2
n+1(n∈N*),求出数列{an}的通项公式,再求出前n项和,求极限即可.
解答:证明:(1)bn+1=an+2-
1
2
an+1
=
1
3
an+1+(
1
2
)n+2
-
1
2
[
1
3
an+(
1
2
)n+1
]=
1
3
an+1-
1
2
an
)=
1
3
bn
若bn=0,则an+1=
1
2
an
,可得出
1
2
an
=
1
3
an+(
1
2
)n+1
,解得an=3×(
1
2
)n

∴a1=
3
2
,不满足条件,故
bn+1
bn
=
1
3
,即数列{bn}是等比数列;
(2)b1=a2-
1
2
a1=
1
3
a1+(
1
2
)2-
1
2
a1=
1
9
,∴bn=(
1
3
)n+1

(3)an+1-
1
2
an
=bn=(
1
3
)n+1
,又an+1=
1
3
an+(
1
2
)n+1

1
3
an+(
1
2
)n+1
-
1
2
an
=(
1
3
)n+1
,∴an=3×(
1
2
)n
-2×(
1
3
)n

Sn=3[
1
2
+
1
4
+
1
8
+…+(
1
2
)n
]-
1
2
[
1
3
+
1
9
+
1
27
+…+(
1
3
)n
]
=3×
1
2
×[1-(
1
2
)n]
1-
1
2
-2×
1
3
×[1-(
1
3
)n]
1-
1
3

=(
1
3
)n
-3×(
1
2
)n
+2
lim
n→∞
Sn=2
点评:本题考查求数列的极限,是数列中综合性强难度较大的题,解此类题的关键是充分理解并运用题设中的条件及数列的相关的性质,求出数列的通项,数列的n项和,的表达式,再根据极限的运算法则,求出数列的极限,本题考查了推理判断的能力及构造变形的能力,运算较繁琐,易出错.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网