题目内容

16.如图是函数f(x)=sinx(x∈[0,π])的图象,其中B为顶点,若在f(x)的图象与x轴所围成的区域内任意投进一个点P,则点P落在△OAB内的概率为(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{1}{4}$D.$\frac{1}{2}$

分析 根据几何概率的求法:点P落在△ABO内的概率就是△ABO的面积与f(x)的图象与x轴所围成的区域的面积的比值.

解答 解:S△ABO=$\frac{1}{2}×π×1$=$\frac{π}{2}$,
设f(x)的图象与x轴所围成的区域为S,则S=${∫}_{0}^{π}sinxdx$=(-cosx)${|}_{0}^{π}$=2,
∴点P落在△OAB内的概率为P=$\frac{π}{4}$,
故选:A.

点评 本题主要考查三角函数、定积分、几何概型.首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A),然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网