题目内容
(本小题满分分)如图,点从点出发,按着的速率沿着边长为正方形的边运动,到达点后停止,求面积与时间的函数关系式并画出函数图像。
,图像略。
解析
(本题满分14分)已知函数.(Ⅰ) 讨论的奇偶性; (Ⅱ)判断在上的单调性并用定义证明.
(本小题12分)设函数y=x+ax+bx+c的图像,如图所示,且与y=0在原点相切,若函数的极小值为–4,(1)求a、b、c的值; (2)求函数的递减区间。
(本题12分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数;(1)如果函数在上是减函数,在上是增函数,求的值;(2)当时,试用函数单调性的定义证明函数f(x)在上是减函数。(3)设常数,求函数的最大值和最小值;
(15分)已知函数是偶函数[||](1) 求的值;(2) 设,若函数与的图象有且只有一个公共点,求实数的取值范围。
(本小题14分) (1) 证明函数 f(x)= 在上是增函数;⑵求在上的值域。
(本小题满分14分)已知(,为此函数的定义域)同时满足下列两个条件:①函数在内单调递增或单调递减;②如果存在区间,使函数在区间上的值域为,那么称,为闭函数;请解答以下问题:(1) 求闭函数符合条件②的区间;(2) 判断函数是否为闭函数?并说明理由;(3)若是闭函数,求实数的取值范围;
(本题满分12分)设函数的定义域为,当时,,且对任意的实数,有.(Ⅰ)求,判断并证明函数的单调性;(Ⅱ)数列满足,且 ①求通项公式的表达式;②令,试比较的大小,并加以证明.
(本题满分10分.)已知函数,试判断函数在(0,+∞)上的单调性,并加以证明。