题目内容
| AC |
| 2AB |
| OA |
| BC |
| 1 |
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||
| 2 |
分析:确定∠AOC=60°,根据
•
=
•(
-
)=
•
-
•
=cos∠AOC-cos∠AOB,即可求得结论.
| OA |
| BC |
| OA |
| OC |
| OB |
| OA |
| OC |
| OA |
| OB |
解答:解:∵∠AOB=30°,
=
,
∴∠AOC=60°,
∵⊙O的半径为1,点A,B,C是⊙O上的点,
∴
•
=
•(
-
)=
•
-
•
=cos∠AOC-cos∠AOB=
-
故答案为:
-
| AC |
| 2AB |
∴∠AOC=60°,
∵⊙O的半径为1,点A,B,C是⊙O上的点,
∴
| OA |
| BC |
| OA |
| OC |
| OB |
| OA |
| OC |
| OA |
| OB |
| 1 |
| 2 |
| ||
| 2 |
故答案为:
| 1 |
| 2 |
| ||
| 2 |
点评:本题考查向量的数量积公式,考查向量的运算,解题的关键是利用向量的运算,化简向量.
练习册系列答案
相关题目