题目内容
【题目】已知函数
,
是奇函数.
(1)求
,
的值;
(2)证明:
是区间
上的减函数;
(3)若
,求实数
的取值范围.
【答案】(1)
,
;(2)见解析;(3)![]()
【解析】
(1)由于函数
是奇函数,且
有意义,则
,定义域关于原点对称,列出方程,即可得到
,
;(2)运用单调性的定义,注意作差、变形,同时运用指数函数的单调性,即可判断符号,得到结论成立;(3)运用奇函数的定义和函数
是区间
上的减函数,得到不等式组,注意定义域的运用,解出它们即可得到范围.
(1)∵函数
,
是奇函数,
∴
,且
,
即
,
.
(2)证明:由(1)得
,
,
设任意
且
,
∴
,
∵
,∴
,∴
,
又∵
,
,
∴
,∴
.
∴
是区间
上的减函数.
(3)∵
,
∴
,
∵
奇函数,∴
,
∵
是区间
上的减函数,
∴
即有
,
∴
,
则实数
的取值范围是
.
练习册系列答案
相关题目
【题目】为了研究“晚上喝绿茶与失眠”有无关系,调查了100名人士,得到下面的列联表:
失眠 | 不失眠 | 合计 | |
晚上喝绿茶 | 16 | 40 | 56 |
晚上不喝绿茶 | 5 | 39 | 44 |
合计 | 21 | 79 | 100 |
由已知数据可以求得:
,则根据下面临界值表:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
可以做出的结论是( )
A. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠有关”
B. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠无关”
C. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠有关”
D. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠无关”