题目内容
观察下表
1=1
3+5=8
7+9+11=27
13+15+17+19=64
…
据此你可猜想出的第n行是________.
[n(n-1)+1]+[n(n-1)+3]+…+[n(n-1)+(2n-1)]=n3
分析:分析已知中13=1,23=3+5,33=7+9+11,…,各式子左右两边的形式,包括项数,每一个式子第一数的值等,归纳分析后,即可得到结论.
解答:观察下表
1=1
3+5=8
7+9+11=27
13+15+17+19=64
…
由上述式子可以归纳:
右边每一个式子均有n项,且第一项为n(n-1)+1,则最后一项为n(n-1)+(2n-1),
右边均为n的立方.
即[n(n-1)+1]+[n(n-1)+3]+…+[n(n-1)+(2n-1)]=n3
故答案为:[n(n-1)+1]+[n(n-1)+3]+…+[n(n-1)+(2n-1)]=n3
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
分析:分析已知中13=1,23=3+5,33=7+9+11,…,各式子左右两边的形式,包括项数,每一个式子第一数的值等,归纳分析后,即可得到结论.
解答:观察下表
1=1
3+5=8
7+9+11=27
13+15+17+19=64
…
由上述式子可以归纳:
右边每一个式子均有n项,且第一项为n(n-1)+1,则最后一项为n(n-1)+(2n-1),
右边均为n的立方.
即[n(n-1)+1]+[n(n-1)+3]+…+[n(n-1)+(2n-1)]=n3
故答案为:[n(n-1)+1]+[n(n-1)+3]+…+[n(n-1)+(2n-1)]=n3
点评:归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).
练习册系列答案
相关题目
设y=f(t)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24,下表是该港口某一天从0时至24时记录的时间t与水深y的关系:
经观察,y=f(t)可以近似看成y=K+Asin(ωx+φ)的图象,下面的函数中最能近似地表示表中数据对应关系的函数是( )
| t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| y | 12 | 15.1 | 12.1 | 9.1 | 11.9 | 14.9 | 11.9 | 8.9 | 12.1 |
A、y=12+3sin
| ||||
B、y=12+3sin(
| ||||
C、y=12+3sin
| ||||
D、y=12+3sin(
|
设y=f(x)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24,下表是该港口某一天从0时至24时记录的时间t与水深y的关系:
|
设y=f(x)是某港口水的深度y(米)关于时间t(时)的函数,其中0≤t≤24,下表是该港口某一天从0时至24时记录的时间t与水深y的关系:
| t | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| y | 12 | 15.1 | 12.1 | 9.1 | 11.9 | 14.9 | 11.9 | 8.9 | 12.1 |
经长期观察,函数y=f(t)的图象可以近似地看成函数y=k+Asin(ωt+φ)的图象,下面的函数中,最能近似表示表中数据间对应关系的函数是(t∈[0,24])( )
|
| A. |
| B. |
|
|
| C. |
| D. |
|