题目内容
设是双曲线的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点.若,则双曲线的离心率是( )
A、 B、2 C、 D、
以椭圆的焦点为顶点、顶点为焦点的的双曲线方程是( )
A. B. C. D.
已知椭圆的右焦点为,设A,B为椭圆上关于原点对称的两点,AF的中点为M,BF的中点为N,原点O在以线段MN为直径的圆上.若直线AB的斜率k满足,则椭圆离心率的取值范围为 .
已知函数(,).
(1)若,求函数的单调增函数;
(2)若时,函数的最大值为,最小值为,求,的值.
设,,,则
(A) (B) (C) (D)
埃及数学中有一个独特现象:除用一个单独的符号表示以外,其它分数都要写成若干个单分数和的形式.例如,可以这样理【解析】假定有两个面包,要平均分给5个人,如果每人,不够,每人,余,再将这分成5份,每人得,这样每人分得.形如的分数的分【解析】,,,按此规律, ; .
若一个四棱锥底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球表面积最小时,它的高为( )
A.3 B. C. D.
命题“若,则”的否命题是( )
A.若,则
B.若,则
C.若,则
D.若,则
已知函数,则使得的的范围是( )