题目内容

13.已知函数f(x)=2$\sqrt{3}sin(x+\frac{π}{4})cos(x+\frac{π}{4})+sin2x+a$的最大值为1.
(Ⅰ)求常数a的值;
(Ⅱ)求函数f(x)的单调递增区间.

分析 (Ⅰ)利用两角和的正弦函数公式化简可得:f(x)=$2sin({2x+\frac{π}{3}})+a≤1$,利用正弦函数的性质即可得解a的值.
(Ⅱ)由$-\frac{π}{2}+2kπ≤2x+\frac{π}{3}≤\frac{π}{2}+2kπ$,即可解得函数的单调递增区间.

解答 解:(Ⅰ)∵$f(x)=\sqrt{3}sin({2x+\frac{π}{2}})+sin2x+a=\sqrt{3}cos2x+sin2x+a$=$2sin({2x+\frac{π}{3}})+a≤1$,
∴2+a=1,
∴a=-1.
(Ⅱ)由$-\frac{π}{2}+2kπ≤2x+\frac{π}{3}≤\frac{π}{2}+2kπ$,解得$-\frac{5π}{12}+kπ≤x≤\frac{π}{12}+kπ$,
所以函数的单调递增区间$[{-\frac{5π}{12}+kπ,\frac{π}{12}+kπ}],k∈Z$.

点评 本题主要考查了两角和的正弦函数公式的应用,考查了正弦函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网