题目内容
(2012•贵阳模拟)设等差数列{an}的公差d为-2,前n项和为Sn,则
=
| lim |
| n→∞ |
| ||
| Sn |
-3
-3
.分析:通过等差数列求出通项公式与前n项和,利用数列的极限直接求解即可.
解答:解:因为等差数列{an}的公差d为-2,前n项和为Sn,an=a1-2(n-1),
Sn=na1+
×(-2)
∴
=
=
=-3.
故答案为:-3.
Sn=na1+
| n(n-1) |
| 2 |
∴
| lim |
| n→∞ |
| ||
| Sn |
| lim |
| n→∞ |
| (a1-2(n-1))2-n2 | ||
na1+
|
| lim |
| n→∞ |
| 3n2 |
| -n2 |
故答案为:-3.
点评:本题考查数列的极限的求法,等差数列的通项公式与前n项和的求法,考查计算能力.
练习册系列答案
相关题目