题目内容
19.设函数f(x)=sin(2x+φ)(0<φ<$\frac{π}{2}$)的图象的一条对称轴是直线x=$\frac{π}{8}$,则f(x)的单调递增区间是( )| A. | (-$\frac{3π}{8}+kπ,\frac{π}{8}+kπ$)k∈Z | B. | (-$\frac{3π}{8}+\frac{kπ}{2},\frac{π}{8}+\frac{kπ}{2}$)k∈Z | ||
| C. | ($\frac{π}{8}+kπ,\frac{5π}{8}+kπ$)k∈Z | D. | (-$\frac{3π}{8}+2kπ,\frac{π}{8}+2kπ$)k∈Z |
分析 由对称性可得φ=$\frac{π}{4}$,进而可得f(x)=sin(2x+$\frac{π}{4}$),解不等式2kπ-$\frac{π}{2}$<2x+$\frac{π}{4}$<2kπ+$\frac{π}{2}$可得答案.
解答 解:∵函数f(x)=sin(2x+φ)的图象的一条对称轴是直线x=$\frac{π}{8}$,
∴2×$\frac{π}{8}$+φ=kπ+$\frac{π}{2}$,k∈Z,结合0<φ<$\frac{π}{2}$可得φ=$\frac{π}{4}$,
∴f(x)=sin(2x+$\frac{π}{4}$),
由2kπ-$\frac{π}{2}$<2x+$\frac{π}{4}$<2kπ+$\frac{π}{2}$可得kπ-$\frac{3π}{8}$<x<kπ+$\frac{π}{8}$
∴f(x)的单调递增区间为:(kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$)(k∈Z)
故选:A
点评 本题考查三角函数的单调性,涉及对称性和不等式的解法,属基础题.
练习册系列答案
相关题目
9.某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(℃)与该小卖部的这种饮料销量y(杯),得到如下数据:
(1)若先从五组数据中,求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给五组数据,求出y关于x的线性回归方程y=bx+a;并根据线性回归方程预测当天气预报1月16日的白天平均气温7(℃)时奶茶店这种饮料的销量.
| 日期 | 1月11日 | 1月12日 | 1月13日 | 1月14日 | 1月15日 |
| 平均气温x( ) | 9 | 10 | 12 | 11 | 8 |
| 销量y(杯) | 23 | 25 | 30 | 26 | 21 |
(2)请根据所给五组数据,求出y关于x的线性回归方程y=bx+a;并根据线性回归方程预测当天气预报1月16日的白天平均气温7(℃)时奶茶店这种饮料的销量.
10.设集合S={x∈N|0<x<6},T={4,5,6}则S∩T=( )
| A. | {1,2,3,4,5,6} | B. | {1,2,3} | C. | {4,5} | D. | {4,5,6} |
7.已知约束条件$\left\{\begin{array}{l}x≥1\\ x+y-4≤0\\ kx-y≤0\end{array}\right.$表示的区域是一个三角形,则k取值范围是( )
| A. | (-∞,-1) | B. | (-1,3) | C. | (-∞,3) | D. | (3,+∞) |
11.i为虚数单位,复数$\frac{2+i}{1-i}$=( )
| A. | i-2 | B. | 2-i | C. | $\frac{1}{2}+\frac{3}{2}i$ | D. | $\frac{1}{2}-\frac{3}{2}i$ |
9.如图$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$为互相垂直的两个单位向量,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=( )

| A. | $4\sqrt{2}$ | B. | $2\sqrt{10}$ | C. | $2\sqrt{13}$ | D. | $2\sqrt{15}$ |