题目内容
9.设直线y=2x+k与抛物线y2=4x相交于A,B两点.(1)当|AB|=3$\sqrt{5}$时,求k的值;
(2)设点P是x轴上一点,当△PAB的面积为9时,求点P的坐标.
分析 (1)直线方程与抛物线方程联立,利用韦达定理,可求|AB|,即可得到结论;
(2)求出P到AB的距离,利用△PAB的面积为9,建立方程,即可求点P的坐标.
解答 解:(1)设A(x1,y1)、B(x2,y2),
由抛物线y2=4x与直线y=2x+b,可得4x2+4(k-1)x+k2=0,
△=16(k-1)2-16k2>0,
∴k<$\frac{1}{2}$.
又由韦达定理有x1+x2=1-k,x1x2=$\frac{{k}^{2}}{4}$,
∴|AB|=$\sqrt{1+4}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{5(1-2k)}$=3$\sqrt{5}$,
∴k=-4;
(2)设x轴上点P(x,0),P到AB的距离为d,
则d=$\frac{|2x-0-4|}{\sqrt{5}}$=$\frac{|2x-4|}{\sqrt{5}}$,
∴S△PBA=$\frac{1}{2}$•3$\sqrt{5}$•$\frac{|2x-4|}{\sqrt{5}}$=9,
∴|2x-4|=6,
∴x=5或x=-1,
∴P(5,0)或(-1,0).
点评 本题考查直线与抛物线的位置关系,弦长的计算,考查三角形面积公式的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关题目
19.某学校为挑选参加地区汉字听写大赛的学生代表,从全校报名的1200人中筛选出300人参加听写比赛,然后按听写比赛成绩择优选取75人再参加诵读比赛.
(1)从参加听写比赛的学生中随机抽取了24名学生的比赛成绩整理成表:
请你根据该样本数据估计进入诵读比赛的分数线大约是多少?
(2)若学校决定,从诵读比赛的女生的前4名a,b,c,d和男生的前两名e,f中挑选两名学生作为代表队队长,请你求出队长恰好为一男一女的概率.
(1)从参加听写比赛的学生中随机抽取了24名学生的比赛成绩整理成表:
| 分数段 | [60,65) | [65,70) | [70,75) | [75,80) | [80,85) | [85,90) | [90,95] |
| 1 | 2 | 6 | 9 | 4 | 1 | 1 |
(2)若学校决定,从诵读比赛的女生的前4名a,b,c,d和男生的前两名e,f中挑选两名学生作为代表队队长,请你求出队长恰好为一男一女的概率.
20.曲线y=-$\frac{1}{2}$x+lnx的切线是直线y=$\frac{1}{2}$x+b,则b的值为( )
| A. | -2 | B. | -1 | C. | -$\frac{1}{2}$ | D. | 1 |
18.设定义在(0,+∞)上的单调函数f(x)对任意的x∈(0,+∞)都有f(f(x)-log2x)=6,则不等式f(x)>3的解集为( )
| A. | {x|x>1} | B. | {x|x>$\frac{1}{2}$} | C. | {x|0<x<1} | D. | {x|0<x<2} |