题目内容

一个圆圆心为椭圆右焦点,且该圆过椭圆中心,交椭圆于P,直线PF1(F1为该椭圆左焦点)是此圆切线,则椭圆离心率为______.
设F2为椭圆的右焦点
由题意可得:圆与椭圆交于P,并且直线PF1(F1为椭圆的左焦点)是该圆的切线,
所以点P是切点,所以PF2=c并且PF1⊥PF2
又因为F1F2=2c,所以∠PF1F2=30°,所以 |PF2|=
3
c

根据椭圆的定义可得|PF1|+|PF2|=2a,
所以|PF2|=2a-c.
所以2a-c=
3
c
,所以e=
3
-1

故答案为:
3
-1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网